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Spherical-wave scattering by a finite-thickness solid plate
of infinite lateral extent, with some implications for panel
measurements

Jean C. Piquette
NaualResearch Laboratory, UnderwaterSound Reference Detachment. P. O. Bax5 ,933 7, Orlando. Florida
32856-8337

(Received 19 December 1986; accepted for publication 29 December 1987)

The solution to the problem of the interaction of a spherical wave with a homogeneous and
isotropic solid plate of infinite lateral extent, but finite thickness, is considered theoretically.
Both the source and the plate are immersed in an infinite, inviscid fluid. Appropriate boundary
conditions are imposed on the full three-dimensional elasticity equations. The solution is
evaluated numerically for a variety of materials for a l-kHz incident spherical wave and for a
5-kHz incident spherical wave. For the numerical study, the fluid medium is taken to be water.
Under certain conditions, "overpressures" are predicted for both the reflected and transmitted
fields (i.e., the amplitude of the reflected pressure and/or the transmitted pressure can exceed
the maximum value of the amplitude of the incident pressure on the plate surface). These
overpressures are consistent with the law of conservation of energy in the sense that, for a plate
composed of lossless material, the total incident power is found to be equal to the sum of the
total reflected power plus the total transmitted power. An important conclusion of this
research is that the practice of attempting to reduce the influence of edge diffraction in panel
tests by using samples of increasingly larger lateral extent may result in measurements that are
substantially corrupted by wave-front curvature effects, particularly if the sample panel
includes a steel backing plate.

PACS numbers: 43.20.Fn, 43.30.Gv

LIST OF SYMBOLS P,,P, reflected pressure and transmitted pres-
sure, respectively

A vector potential in the solid p, a general pressure variable equal to
A0  jP oe

- z' pi + p, when evaluated at z =0, and
a(6),b(fl),(), equal top, when evaluated at z = - .
d(#),e(fi),f) expansion functions PO incident spherical wave pressure ampli-
cj,c longitudinal speed and shear speed in the tude coefficient; pi = Poz'e - ik-'eik/r

solid, respectively r,6,z cylindrical polar coordinates (see Fig. I)
,incident power, reflected power, and r' radius of the "circle of observation" (see

transmitted power, respectively text for definition)
j imaginary unit = -- R reflection coefficient evaluated at the ori-
Jo(z), (z) cylindrical Bessel functions of the first gin of coordinates

kind of argument z and orders 0 and 1, T transmission coefficient evaluated at the
respectively point (0,0, - l)

k real wavenumber in the inviscid fluid sur- u particle displacement in the solid
rounding the plate z' z coordinate of the spherical-wave source

k,,k, complex longitudinal wavenumber and Aqu Lam6 parameters
complex shear wavenumber in the solid, p, density of the solid
respectively ,o,0,Z,

k2  wavenumber in the fluid slab , ,i're stress components
I plate thickness scalar potential in the solid
p incident pressure angular frequency of the spherical wave

INTRODUCTION ten established by utilizing the farfield' of a source. How-
Generally, the plane-wave reflection coefficient and the ever, due to the limited size of test facilities, it is not always

plane-wave transmission coetficient are the quantities of in- practical to achieve the desired separation between the
terest in panel measurements. Plane-wave conditions are of- source and the test panel. Therefore, it is important to deter-
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mine the potential ramifications of performing panel mea- rived with the help of the SMPTM computer program. This
surements in the nearfield' of a source. One of the simplest program also has the added benefit of being able to directly
cases to consider is that of the sound radiation from a point generate FORTRAN subroutines that can numerically evalu-
source interacting with a single-layer, homogeneous, iso- ate the resulting complicated symbolic expressions. Thus,
tropic solid plate of infinite lateral extent but finite thick- once the symbolic expressions for the boundary conditions
ness. and the assumed solutions have been defined, the process of

The interaction of a spherical wave with a plane has long imposing the boundary conditions on the assumed solutions
been of interest to the geophysics community.2" However, is relatively straightforward. However, the problem of nu-
the results of this previous work are not immediately appli- merically evaluating the required integrals must still be
cable to panel measurements for a variety of reasons. Often, tackled by more conventional means.
only high-frequency or farfield limiting cases have been con- The theory is developed in Sec. I. Numerical results are
sidered. Much of this previous work has not included the presented in Sec. II. Some consequences of the theoretical
influence of shear waves in the solid, or has neglected loss, or results for panel measurements are given in Sec. III. Finally,
has considered only semi-infinite solid media. Rarely has a a summary and the conclusions are given in Sec. IV.
transmitted wave been computed, and generally not for the
case in which the medium behind the solid (with respect to I. THEORY
the source) is also an inviscid fluid. In order to be useful in The theoretical approach used here is the same as that
evaluating panel measurements, one needs the general solu- used in Ref. 1, in which the scattering of a spherical wave by
tion to the problem of a spherical wave interacting with a an elastic cylinder is considered. However, unlike that case,
lossy, finite-thickness solid that is both homogeneous and the differential equations in the present problem are solved
isotropic. The source and the solid must both be immersed in exactly. Also, unlike Ref. 1, the numerical investigation con-
an inviscid fluid medium. It is the purpose of the present sidered here includes the effects of nonzero loss in both the
article to discuss the consequences of the solution to this bulk and shear moduli of the material composing the plate
problem for panel measurements.

The approach taken to obtain the solution is to impose A. Differential equations
the appropriate boundary conditions on the full three-di- The geometry of the scattering problem and the cordi-
mensional elasticity equations. Solutions to elasticity prob- nate system are presented in Fig. 1. Following the procedure
lems are rarely based on the complete elasticity theory, of Ref. 1, we begin the present investigation by first consider-
owing to the complexity of the attendant mathematics. How- ing the equation of motion of waves in a solid elastic medi-
ever, due to the relatively recent advent of computer pro- um7
grams that are capable of directly manipulating mathemat-
ical symbols, this difficulty is no longer insuperable. Unlike (A + 2p)V(V-u) -pVX (VXu) = p - 1u

computer languages like FORTRAN and BASIC, such symbol at-
manipulation programs do not require numerical values to We assume that the displacement u in the solid can be re-
be assigned to the symbolic quantities of interest. Thus one
can bring the full power, speed, and memory capabilities of a
modem computer to bear on problems involving the manipu-
lation of quantities containing thousands of algebraic sym-
bols. In addition to being capable of performing the standard SPHERICALWAvE

algebraic operations of expansion, factorization, rationali- SOURCE
zation, etc., many such programs can also perform several . . . .- -/
calculus-type operations, such as differentiation (of very O sIGIN OF'

COORDINATES
complicated expressions) and integration (of somewhat ele-/ 'i [

mentary expressions). Of course, such programs are really
only "slaves" that can perform calculations that are capable
of algorithmic description, such as computing the derivative /
of an expression containing, say, 100 factors (a task that may
be beyond human capability). However, such programs are
incapable of performing tasks that require human talent, / I

such as choosing an appropriate series expansion to satisfy /
both a given differential equation and the appropriate X
boundary 'dittions. They are, of course, completely in-
capable of choosing which differential equation to solve, as
weit as which ilwuudzjy conditions are appropriate. Thus thickness I. with infinite lateral dimensions. ,-n infinite, inviscid fluid medi-

such symbol manipulators bear approximately the same re- um is located on both sides of the plate. A spherical-wave source is located
lationship to the process of obtaining the solution to a phys- at an offset distance z' from one side of the plate. The point of contact of the

ical problem as word processing programs bear to the pro- perpendicular between the spherical-wave source and the plate &vfines the
origin of coordinates. The coordinate system is cylindrical polar, with coor-cess of creating a manuscript. dinate variables r, 0, z. For clarity in defining the polar angle. a rectangular

The theoretical results discussed in this article were de- coordinate system is also depicted.
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solved via the usual Helmholtz theorem into scalar and vec- 1 d 20 (0) 2 01 )

tor potentials b and A, respectively, such that 0(0) dO 2

u= -Vb+VxA. (2) and

Here, 0b and A are required to be solutions of the differential
equations I dr dR(r) m 2  

_l= -k2, (12)
V2,_ 1 820 =0 (3) rR(r) dr\ d r2  

Z

t 2where m2 and k ' are cparation constants. Equations (10)

and and ( 1) admit complex exponential and trigonometric so-
1 2 =0. lutions, where the separation constant m is required to be an

V2A 0. (4) integer by the periodicity condition associated with the coor-
dinate variable 0. Equation (12) admits solutions that are

We can rewrite Eq. (4) by expressing V2 A in component Bessel functions of irrational order 0 +-m . However, due
form,' giving to the assumed independence of the solutions from the vari-

V2A o +2 A, 2 able 0, the separation constant m must vanish. If we intro-

2 -- -ksA ,  (5) duceanewconstantk, such that

V2A, A, 2 2 k2 =k2-A-k (13)

r2  r2 
do the radial equation simplifies to

and 1 d (rdR() (k2,(14)

V2 drR dr,,I (r)=z0. (4A= - k A,. (7) r dr r,/

Thus the coupled set of four partial differential equations to The only solution to Eq. (14) that obeys the physical require-
be solved consists of Eqs. (3) and (5)-(7). Note that Eq. (3) ment that R (r) remain finite for r = 0 (see Fig. 1) is
yields the Helmholtz equation if harmonic time dependence R (r) = CJ, (k., r), (15)
is assumed. Note, in addition, that Eq. (7) is also a Helmholtz where C is an arbitrary constant. This means that the solu-
equation. However, Eqs. (5) and (6) arenot Helmholtzequa- t is arberrycons tan be hat t so-
tions. One consequence of this fact was that the problem of tions for the functions Ao and ,r can be built up o ut of corn-
the scattering of a spherical wave by an elastic cylinder, plex exponential (or trigonometric) functions and the func-
considered in Ref. 1, was only solved approximately. tion J1 . This matter will be considered further in the next

From the symmetry of Fig. 1, it is clear that none of the
solutions to the present problem will depend on the coordi-
nate variable 0. Hence, the terms containing a derivative
with respect to this variable in Eqs. (5) and (6) are both zero. B. Assumed foms for the solutions
This means that these equations simplify to In order to be able to solve the differential equations

- .4/r 2 = - k 0  (8) represented by Eq. (3) (under the assumption of harmonic
VA, -ktime dependence) and Eqs. (7)-(9), it is first worthwhile to

and choose an appropriate expansion for the incident spherical

V2A, - A,/r - k 2 A,, (9) wave. This is9

respectively. Thus, unlike the analogous situation arising in p oC Jo(flr)exp [xk # (Y - z) ] fl rfl.the case of the cylindrical scatter, the differential equations P . j .4 x -#

for the functions A, and A, in the present problem are not (16)
coupled. However, Eqs. (8) and (9) still are not Hehnholtz which is valid for z < z'.
equations, due to the presence of the - A /r 2 terms in each In constructing the solutions to the present problem, it
equation. We will therefore follow the usual procedure used is important to note that this process is greatly simplified in
to solve such equations; namely, we will introduce the as- the present cas ne thall such solutions can be expressed in
sumption of separation-of-variables. Since Eqs. (8) and (9) terms of standard wavefunctions. It is also important to take
are of identical form, we need to consider in detail only one
of theseequations. In Eq. (8), we assume that the function A cognizance of the symmetry ofquirem the robe tn the presentcase, symmetry requires the solutions to be independent of
is separable into functions R (r), 0(0), and Z(z) such that the 0 coordinate. Also, it is important to bear in mind the
A, = R(r)e(9)Z(z). Substitution of this assumed form boundary conditions that must be satisfied. These will be
into Eq. (8) produces the separated set of equations considered in the next subsection. We will therefore proceed

I d 2Z(z) _ _ 2 (10) to assume that the solutions to the present problem may be

Z(?) dz 2  expressed in the form

P, a(#)Jo(/r)exp[ -jj7]k2 -/3(z' - z)fld3 (17)
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f a ()Jo(r)exp[ -jk -,6 (z' - z),d6 (17)

Jo(,r){c(#6)exp[W - z) ] + d()exp[ - (z'-z) d6 (19)

A, J, (Or){e(0)exp [j , -- z' - z)] +f(6) exp[ -j-2 _- 2(z, -z)] }f1 d (20)

and A. = A, = 0. Here, a, b, c, d, e, and fare six unknown (auauB (24
functions to be determined. TO= =k rd + -z ' (24)

Of course, in order to justify these assumed forms, two du, du
conditions must be satisfied. First, they must represent par- = Pi- + .-7, (25)
ticular solutions of the partial differential equations. Sec- dz 6,
ond, they must be capable of satisfying all the boundary con- and
ditions involved in the physical problem. We take up the / due UO 1 du,(
latter point in the next subsection. T,- = t r - - ) . (26)

To see that the given assumed forms do in fact satisfy ar r r dO

the differential equations, note first that the quantities p, It is next helpful to reexpress the stress components in
andp, represent pressure waves in the fluid surrounding the terms of the potentials A and b. This may be done with the
solid. Therefore, the differential equation that governs the help of Eq. (2). Also, it should be noted that attempting to
behavior of these functions is the Helmholtz equation. directly impose the boundary conditions will result in a set
Equations (17) and (18) areclearly particularsolutionsofthe of equations that is difficult to solve. A more convenient set
Helmholtz equation because they are constructed from stan- of equations is obtained if the equation that imposes contin-
dard wavefunctions. [Note also the similarity of Eqs. (17) uity of normal displacement is differentiated with respect to
and (18) to the expansion forp, given in Eq. (16). ] The same r. (This is a legitimate operation because, although this equa-
argument applies to the expansion for the function 0&, given tion is evaluated at a particular value ofz, it mtst hold for all

in Eq. (19), since this function's governing differential equa- values ofr. Hence, each side of the equation is a continuous-
tion, Eq. (3), is also a Helmholtz equation, under the as- ly differentiable function of r.) Equation (8) can be used to
sumed harmonic time dependence. The solution for A, has replace combinations of terms in the boundary condition
been constructed to be consistent with the discussion given equations with simplified expressions. If we also utilize the
inconnection with Eqs. (10)-( 15). Hence, Eq. (20) isseen to symmetry requirement that the solutions be independent of
be a particular solution of Eq. (8). Finally, note that the 0, and if we further take advantage of the assumption that
equationsA. = A, = 0are the trivial solutions to Eq. (7)and A2 = A, = 0, the boundary conditions assume the form
Eq. (9), respectively. Thus it only remains to be shown that 1 d 2p, ( a 2 dA0  (27
these assumed forms can satisfy the boundary conditions of ( zdr - z A A z2 ) (27)
the problem. We consider this matter next. PW zd rd

(for the continuity of normal displacement),

C. Boundary conditions (2 2-4 +Ak 2 0) (28)
dZ2 

I

There are three boundary conditions for the present (for the continuity of normal stress), and
problem, each of which must be imposed at each of the two
fluid-solid interfaces. [This explains why six unknown ex- 0= -2A5--2 2 9A 6- k 2, (29)
pansion functions a-fare needed to formulate the assumed dz dr dz 2  -

solutions represented by Eqs. (17)-(20).] These three (for the vanishing of shear stress).
boundary conditions are: (i) the continuity of normal dis- Note that Eqs. (27)-(29) are written so that the left-hand
placement, (ii) the continuity of normal stress, and (iii) the sides refer to the fluid and the right-hand sides refer to the
vanishing of shear stress. By combining the general expres-
sion for strain written in cylindrical coordinates' with solid [e.g., the left-hiand side of Eq. (28) represents the stressHook 's aw or i otr pic medi ," e o tain the str ss- in the fluid, w hile the right-hand side of this equation repre-
stratn relationships sents the normal stress in the solid]. Each of these boundaryconditions must be imposed both at z = 0 and z = - 1 (refer

0 -L au,+Vu, (21) to Fig. 1 ). The integral equations that result from substitut-
S= +ingEqs. (16)-(20) intotheboundaryconditionsofEqs. (27)-
duo (29) can be converted into algebraic equations by using the

e = -i + AV.u, (22) orthogonality property of the Bessel function. This results in
a set of six algebraic equations in the six unknown functions

= 8-i + AV-u, (23) a-f As previously remarked, this procedure was implemen-
= z +  ted with the help of the symbolic manipulation computer
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program SMP. This program was also used to analytically integration procedure, with the greatest density of quadra-
solve the resulting algebraic set, and to generate FORTRAN ture points being located in the regions of most-rapid vari-
subroutines that permit numerical evaluation of the expan- ation of the integrand. The small contribution to the total
sion functions a(fi) and b(/f). integral from the infinite subinterval is then evaluated using

Note that, since the algebraic set of six equations in the a 15-point Gauss-l.aguerre"3 numerical integration proce-
six functional unknowns a-f is capable of analytical solu- dure. See Ref. 1 for a more detailed description of the nu-
tion, this completes the demonstration that the assumed merical integration process.
forms ofthe solutions, given by Eqs. ( 17)- (20), are appropri- As was the case for the solution presented for the expan-
ate for the present problem. The resulting analytical solu- sion function in Ref. 1, the solutions for the expansion func-
tions for the expansion functions are extremely complicated tions in the present problem are extremely complicated.
and unwieldy, and are not particularly illuminating. There- However; since the analytical solutions and the required
fore, we will not display the analytical expressions, and will FORTRAN subroutines for evaluating them numerically were
choose instead to investigate several numerical examples. obtained using a symbolic computation program, the likeli-

hood of mathematical slips occurring in obtaining the solu-
tions, and in generating the required computer programs to
numerically evaluate the results, is considerably reduced.

II. NUMERICAL CALCULAT!ONS Nonetheless, it is important to investigate limiting test cases
Preliminary plots of the real and imaginary parts of the to gain confidence in the reliability of the software before

integrands containing the expansion functions a(f6) and venturing into calculations of a more general (and more in-
b(fl) revealed variations [for the materials and frequency teresting) nature.
interval of interest (.1-5 kHz) ] that are similar to the varia- A very useful test case is the problem of the interaction
tions observed in the expansion functions of Ref. 1. Namely, of a spherical wave with a finite-thickness fluid plane. As is
the integrands vary slowly over most of the integration inter- the case for the solid, an infinite, inviscid fluid medium is
val, but can have large fluctuations about a small number of located on both sides of the fluid plane. (The two fluids in-
points (see Fig. 3 of Ref. 1). Hence, a similar numerical volved in this reduced problem are of course assumed to be
scheme was applicable in the present case for evaluating the immiscible.) The solution to this problem is relatively
integrals of Eqs. (17) and (18). (These equations give repre- straightforward to obtain by analogy to the solution to the
sentations of the reflected pressure and the transmitted pres- related problem involving an incident plane wave. 4

sure, respectively.) In summary, the numerical scheme in- The functional expansions introduced for the incident,
volves first splitting the infinite integration interval into a reflected, and transmitted waves for the purpose of obtain-
finite subinterval plus an infinite subinterval. The finite su- ing the solution to the general problem [ i.e., Eqs. ( 16)-( 18),
binterval is then searched for the regions of most-rapid vari- respectively] are also applicable to the finite-thickness fluid
ation of the integrand. The integral over the finite subinter- plane problem. For the waves internal to the fluid plane, the
val is then evaluated using a Gauss-Legendre 2 numerical following expansion is also useful'-:

I

(' Jo(flr){g(,)exp[jk .. fi 2 (z' - z)] + h(i)exp[ -j f- l (z' -z) ]}f/df(3Pint (30)

In Eq. (30), k2 denotes the wavenumber in the fluid compos- mitted waves arising from a spherical wave interacting with
ing the plane, and g and h are functions to be determined. [ Of a finite-thickness fluid plane. Calculations were performed
course, the functions a and b of Eqs. (17) and (18) are also Cir a variety of fluid properties and for test frequencies I and
unknowns that must be redetermined for the present case. ] 5 kHz. The fluid properties chosen do not correspond to
The boundary conditions for the finite-thickness fluid plane those of any real fluids, but rather are representative of the
problem are: (i) the continuity of normal displacement and densities and sound speeds characteristic of the solids of
(ii) the continuity of pressure. Each of these conditions must interest (i.e., metals and elastomers). The density range of
be evaluated both at z = 0 and at z = - 1. This explains why the fictitious fluids considered was 0.5-0.8 g/cm'. The
four unknown expansion functions a, b,g, and hare required sound-speed range considered was 1.5 X 105-7.0 X 105 cm/s.
in the representations of the solutions for the reduced prob- The results were next compared to numerical solutions
lem. obtained using a much simpler computer program that im-

The solution to the fluid plane problem described above plements the solution to the associated problem involving
was also implemented using the SMP symbolic computation the interaction of a normally incident plane wave with a fluid
program. The same subroutine that was used to numerically plane. The comparison was achieved by first computing the
evaluate the integrals required to compute the reflected- reflected-wave pressure at the point r = 0, z = 0 for the case
wave pressure and the transmitted-wave pressure in the of the incident spherical wave. The transmitted wave pres-
more general case was also used to evaluate the associated sure at the point r = 0, z = - I was also computed for tiis
integrals arising in the reduced problem. The resulting com- case. The results so obtained were compared to the corre-
puter program was then used to evaluate reflected and trans- sponding results obtained using plane-wave theory, evaluat-
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ed at the relevant surfaces. In all cases considered, the wave speed for each material is listed for reference in the last
spherical-wave solution differed very little from the plane- column of the table. 1 6

wave solution. For example, consider an incident spherical Note that for several of the spherical-wave cases pre-
wave of I-kHz frequency, originating from a source located sented, the amplitude of the reflected itnd/or transmitted
at z' = 200 cm, interacting with the fictitious fluid having waves exceeds that of the incident wave evaluated at the
density 1.2g/cm 3.soundspeed3X IOcm/s, and l-cmthick- origin of coordinates. Although this unexpected result
ness. In this case, the spherical-wave reflection coefficient, would be indicative of error in a normal-incidence plane-
evaluated on the surface of the fluid plane that is facing the wave calculation, "fis is not necessarily so for an incident
source and normalized to the incident wave at the origin of spherical wave, since the reflected and transmitted pressure
coordinates, is 9.33 X 10- 4 -2.35 x 10- /, while that for the amplitudes will each vary with r in this case. Nonetheless,
plane wave is 6.12 X 10-4-2.08 X 10--j. The spherical-wave one is reluctant to accept the validity of such computed
transmission coefficient for this case, evaluated on the sur- "overpressures" without further investigation.
face of the fluid plane that is opposite the source and also In order to determine whether the unexpected results of
normalized to the incident wave at the origin of coordinates, Table I might have possibly arisen from either numerical
is. 0.99 3 + 2.97 x 10- 2j, while that for the plane wave is errors or computer programming errors, an energy-conser-
0.994 + 2.93 x 10- 2j. vation analysis was performed. This calculation involved nu-

Next, the computer program that implements the solu- merically performing the power integral' 7

tion to the full elasticity problem was used to evaluate the -'
reflected and transmitted waves arising from the interaction E _- Reo p*(r)v(r).h(2,rdr). (31)2 J
of a spherical wave with a finite-thickness fluid plane. In

order to do this, an extremely small value ( 10- 6 dyn/cm 2) The asterisk in Eq. (31) denotes complex conjugate. This
for the shear modulus/, was used. In all cases tested, the integral was evaluated over both the front and back surfaces
results obtained using the general computer program agreed of the plate, and the result was compared to the total power
with those obtained using the specialized computer program incident on the infinite plate. (The total incident power is
for this problem to within the precision of implementation. equal to one-half the total power radiated by the point

Taking the above consistencies as indicating that the source.) The particle velocity v required in Eq. (31 ) was eval-
computer program that implements the general solution uated numerically at each point of integration by using the
does not contain simple programming crrors, cases were gradient of the appropriate pressure term. [In essence, the
next considered which involved a solid plate. The results of partial derivative with respect to z of Eq. (17) was used to
several representative calculations are given in Table I. The compute the required component of the particle velocity as-
first column of this table gives the material considered. The sociated with the reflected pressure, and this same deriva-
second column gives the frequency considered. The third tive of Eq. (18) was used to compute the required component
through sixth columns present reflection coefficients (R) of the particle velocity associated with the transmitted pres-
and transmission coefficients (n) for both the spherical-wave sure. The exact relationship between each pressure gradient
and plane-wave cases. (The coefficients are normalized to and the relevant particle velocity is provided by Euler's
the incident wave at the origin of coordinates.) The reflec- equation. ] The integral of Eq. (31 ) was performed by using a
tion coefficients are evaluated at r = 0, z = 0 and the trans- 32-point Gauss-Legendre quadrature scheme.' 2 Each of the
mission coefficients are evaluated at r = 0, z = - 1 cm. required pressures and velocities was evaluated at each of
Plate thickness in all cases considered is I = 1 cm. Spheri- the 32 quadrature points. Since each required velocity and
cal-wave source offset is z' = 200 cm in all cases. The shear- pressure is defined in terms of an integral, each power calcu-

TABLE I. Spherical-wave complex reflection coefficients R and transmission coefficients Tcompared to plane-wave coefficients for a variety of materials,
each of/ = I-cm thickness. PMM denotes polymethylmethacrylate. The fluid medium is water. Spherical-wave source offset z' in each case is 200 cm. R is
evaluated at the origin of coordinates. Tis evaluated at the point (,0. - 1). Each coefficient is normalized to the incident wave evaluated at the origin of
coordinates. (See Fig. 1.)

R T
Frequency Shear speed

(kHz) Spherical wave Plane wave Spherical s.,ave Plane wave (cm/s)

Aluminum - 0.482 + 0.140j 0.003 - 0.056j 1.50 - 0.223j 0.997 + 0.057j 2.98 x 10'
Brass - 0.078 + 0.204] 0,031 - 0.172j 1.02 - 0.350j 0.969 + 0.173] 2.11 )< 10'
Lead 1 0.104 - 0.185j 0.053 - 0.223j 0.896 + 0.185j 0.947 -t- 0.225j 6.98 >, 10'
PMM - 0.174 + 1.15j 0.001 - 0.019j 0.792 + 1.18j 0.999 + 0.030j 1.34x 10'
Steel - 0.616 - 1.07] 0.025 - 0.157j 1.69 - 1.02j 0.974 + 0.157j 3.28x 10'

Aluminum - 0.133 - 0.063j 0.074 - 0.260j 0.355 + 0.562j 0.925 + 0.264j 2.98X 10'
Brass 1.17 - 0.614j 0.442 - 0.495j 1.22 - 0.002j 0.558 + 0.498j 2.11 x 105
Lead 5 0.575 - 0.457j 0.584 - 0.488j 0.420 + 0.468j 0.415 + 0.498j 6.98 x 104

PMM 0.096 - 0.237j 0.014 - 0.094j 1.03 - 0.001J 0.983 + 0.149j 1.34> 10'
Steel 0.625 + 0.936] 0.394 - 0.049j 0.015 - 0.8 44j 0.605 + 0.489j 3.28 X 10'
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lation thus involved 65 numerical integrations (32 velocity table with the values in the column that gives the sum of
integrals, 32 pressure integrals, and I integral for the calcu- k, (r') and E, (r'), it becomes clear that the power required
lation of the power). Of course, the integral of Eq. (31) to create the computed overpressures is provided by power
should actually be performed for the upper limit r'- oo. contained in portions of the incident spherical wave that
However, if a sufficiently large value for r' is chosen, the strike the plate in regions that are outside the circle of obser-
vast majority of the power will be included. vation. This conclusion follows from the fact that the sum

Table II presents results of the power calculations for E, (r') + E, (r') is always greater than E, (r'), although the
the 1-kHz case involving a steel plate of 1-cm thickness. difference { [ E, r') + k, (r') ] - E, (r') } clearly appears to
Note from the spherical-wave values listed in Table I that approach zero as r'-. oc. Thus the additional power arrives
the pressure amplitude of the reflected wave exceeds that of at the observation point either by propagating, within the
the incident wave by more than 23% in this case. The trans- plate material, from regions outside of this circle to regions
mitted-wave pressure amplitude is nearly twice that of the interior to it, and then being reradiated into the fluid, or by
incident wave. Hence, this is a particularly severe case to direct radiation into the fluid by regions of the plate that are
examine. outside of this circle. Of course, both of these alternatives

In Table II, the first column gives the upper limit of may contribute to the phenomenon. These unexpected re-
integration r' used in evaluating the integral of Eq. (31). It suits appear to be a consequence of solving the full three-
represents the radius of a circle drawn on either side of the dimensional elasticity theory. Several attempts which were
plate having its center either i) at the origin of coordinates considered to explain these overpressures using simplified
(onthesideoftheplatefacingthesource) or (ii) atthepoint theories were unsuccessful.'".. (For example,20 the flex-
(0,0, -1) (on the side of the plate opposite the source). One ural-wave coincidence frequency for the steel case consid-
such circle may be taken to be that illustrated in Fig. 1, if the ered is approximately 23.7 kHz.)
r coordinate is taken to be equal to r'. For the purposes of the We can gain further understanding of how it is possible
following discussion, we will refcr to either of these circles for overpressures to be present and yet for energy to none-
as a "circle of observation." theless be conserved by investigating the radial dependence

The quantity k, (r') represents the power contained in of the reflected and transmitted pressures. Three cases are
that portion of the incident wave which strikes the infinite considered in Figs. 2 and 3.
plate within the circle of observation depicted in Fig. I. The Figure 2 (a)- (c) presents reflected-wave pressure ampli-
quantity k, (r') denotes the power contained in that portion tudes as a function of r, evaluated at z = 0 and z = 150 cm,
of the reflected wave that also passes through the circle of for steel, polymethylmethacrylate, and lead samples of I-cm
observation on the side of the plate facing the source. Simi- thickness, respectively. So'rce offset is z' = 200 cm and
larly, the quantity k, (r') denotes the power contained in sourcefrequency is I kHz. Figure 3(a)-(c) presents transmit-
that portion of the transmitted wave that passes through the ted-wave results for these same cases, except that the pat-
circle of observation on the side of the plate that is opposite terns are evaluated at z = - 1 cm and z = - 151 cm. As can
the source. All values are expressed as a percentage of the be seen, each of these cases has Ln associated beam pattern.
total power incident on the infinite plate. The power balance Therefore, although the reflected and/or transmitted wave
can be determined by summing the values in the E, (r') and pressure amplitudes can exceed that of the incident wave in
k, r') columns, and comparing the result to 100% (the total the vicinity of r = 0, these pressure amplitudes eventually
incident power). ThesumnE,(r') + k, (r') is given in thelast drop below that of the incident wave at greater values of r.
column of Table II. As can be seen, the total never exceeds Thus it is not unreasonable that the integrated power over
100%. The 10 000-cip radius considered in Table II is the both sides of the plate can be equal to the total incident
greatest value that could be accommodated by the numerical pow r, even though the reflected and/or transmitted wave
scheme used to evaluate the required integrals. It should be pressure amplitudes exceed that of the incident wave in cer-
noted that this radius accounts for 98.4% of the total inci- ta-n limited regions.
dent power. Taking this power calculation as sufficient for establish-

By comparing the values in the Ei (r') column of the ing the validity of the present results, we next investigate a
possible cause of the computed overpressures. The results

TABLE It. Power balance for a l-kHz spherical wave originating from a presented in Table I tend to support the notion that the effect
source located atz' = 200cm and interacting with a steel plateof I-cm thick- is associated with the nonzero shear-wave speed associated
ness and infinite lateral extent. E, (r')-power incident on the relevant with solids. (A similar conclusion was reached in Ref. I
"circle ofobservation" (radiusr'); E, (r')-power reflected through the rel- concerning a cylindrical scatterer.) Evidence for this is pro-
evant circle of observation; E, (r')-power transmitted through the rel-
evant circle of observation. Results are expressed as a percentage of the vided by first noting the small difference between the spheri-
total power incident on the infinite plate. cal-wave and plane-wave results presented for lead in TableI. (Note that the shear speed of lead is about one-half the

r'(cm) E, () E,(e) E, (r') E, (r') + E,(r) sound speed in water.) Since lead has a relatively low shear

10 10.5 4.*8 17.1 21.3 speed, this minor difference between the spherical-wave re-
250 37.5 15.8 24.2 40.0 suits and the plane-wave results may be primarily attribut-

1000 80.3 51.4 31.0 82.4 able to the simple phase and amplitude variation of the inci-
10 000 98.4 62.8 37.0 99.8 dent wave across the plate surface, rather than being due to a

significant shear effect. (Recall also the close agreement

1290 J. Acoust. Soc. Am., Vol. 83, No. 4, April 1988 Jean C. Piquette: Spherical-wave scattering by a plate 1290



1.2 20
'.8

1. o Z- 1.6 Z.-

o - 1.4

'-o 1.2

e- 1 - N

or5o 0.--4_ ... ... o\
Z4 - 5 0.6

0. I .0.4

0.2

0 50 100 150 200 250 300 350 400

(cM) 0 50 100 150 200 20 300 35 40

1t2
Z-0 (b)

2.0

1.0 Z O1.6 0)

08 1.6= 0.8 z

1.4

I 1.2~1.
Z2150

o 0.2 0.2

0.4 Z

50 100 150 200 250 300 350 400 0.2

0 50 100 1 50 200 250 30 350 400

1.24

1.0 18 (C)

Z (c.8

1.4

0.4 -Z -

0.2

2 Z- ISO

0 50 100 150 200 250 200 350 400- 0.2

0 50 1 00 135 200 2 5050 .350 400

FIG. 2. Reflected-wave pressure amplitude, as a function of r, resulting (cm)
from a 1-kHz incident spherical wave originating from a source located at
z'= 200 cm. Solid line: z = O dashed line: z =150 cm; sample thickness: I FIG. 3. Transmitted-wave pressure amplitude, as a function of r, resulting

cm. Incident waveatr = ,z = 0istaken tobeofamplitude 1,0: (a) steel: (b) from a I -kHz incident spherical wave originating from a source located at

polymethylmethacrylate; (c) lead. z' = 200cm.Solidline:z - - lcm;dashedline:z = - 151cm:samplethick-

ness: I cm. Incident wave at r = 0. z - 0 is taken to be ofamplitude 1.0: (a)
steel: (b) polymethylmethacrylate: (c) lead.

between spherical-wave theory and plane-wave theory for
the case of the fluid scatterer discussed earlier.) Note, how- ferences between plane-wave and spherical-wave results are
ever, for the materials having shear speed comparable to or much more pronounced.
significantly greater than the sound speed in water, the dif- We further investigate the notion that the computed
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overpressures are associated with the influence of shear ef- that the departure of the results from those at p/l, = 0 is
fects in Fig. 4(a) and (b). In these figures, the reflected and nonmonotonic, and that there are significant intervals for
transmitted wave pressure amplitudes, evaluated on the rel- which the computed pressures are significantly less than
evant surfaces of the plate, are evaluated for a continuum of those expected from plane-wave theory. (The values present-
fictitious materials. As with the previous figures, the pres- ed fory/u = 0 do not differ significantly from the plane-
sure amplitudes are normalized to that of that incident wave wave results.)
at the origin of coordinates. Each of these fictitious materi-
als is taken to have the same density and the same longitudi- III. SOME CONSEQUENCES FOR PANEL
nal wave speed as that of steel. However, the shear modulus MEASUREMENTS
is allowed to vary between zero, at the left end of the abscis- When an unexpected result such as that reported here is
sa, and the true shear modulus of steel, at the right end of the obtained, one is always concerned that the "phenomenon"
abscissa. (The shear modulus is normalized to that of steel, may be a consequence of mathematical errors or computer
,, so that the abscissa runs from 0 to 1.) Note that the programming errors. However, it would be rather surprising
pressure amplitude corresponding to u/., = 0 in each of if such errors yielded results that are consistent with the law
these figures is less than the incident wave pressure ampli- of conservation of energy. Also, the same computer program
tude at the origin of coordinates, but that this no longer that predicts the unexpected results also predicts very rea-
holds true asy//i, departs from zero. It is interesting to note sonable results for the cases in which the shear speed in the

solid is low (e.g., lead). Nevertheless, these results are suffi-
ciently surprising that, even with the validity test provided

1,__.. by the energy conservation law, one still tends to be skepti-
( i cal.

An attempt was made to acquire experimental data to
verify the theory. Specifically, reflection and transmission

data were acquired for the frequency range 1-5 kHz using
both steel and PMM samples. The samples were each

I,"square-shaped, 76 cm on a side. The experimental param-
eters were the same as those used to obtain the theoretical

So r results presented earlier.
°I These measurements were found to be in reasonably

03 2 good agreement with simple plane-wave theory and. hence,
in apparent disagreement with the predictions of Table I.

.. _Insight into the explanation for these negative results can be
gained by again referring to Table II. Note that, for the
r' = 100-cm radius case, the total reflected + tr?,nsmitted
power is 21.3% of the total incident power. However, the

2 8- F, (r') column shows that only 10.5% of the total incident
2power actually strikes the relevant circle of observation for

2 4 this case. This means that if a measurement were carried out
using a circularly shaped steel plate of 100-cm radius and I-
cm thickness, quantitative zgreement with the predicted re-

16r 'suits could not possibly occur since, as previously men-
tioned, much of the power required to create the predicted
overpressures originates from portions of the incident wave
that would strike the associated infinite plate outside the
circle of observation. For quantitative agreement with the

o 4 theory, a test plate of sufficiently large radius would be re-
o 2 quired that the total power actually incident on the testplate
o -- would not differ significantly from the total refl.ted plus

transmitted power passing through the associated circles of
observation. [The 250-cm radius case considered in Table II
may be a good candidate, since the sum E, (r') + E, (r') ex-

FIG. 4. Rcflected- and transmitted-wave pressure amplitudes arising from ceeds Ej (r') by only 2.5% of the total incident power in this
an incident spherical wave, as a function of normalized shear modulus, for a
continuum of fictitious quasisteel samples. The quantity ,. denotes the instance. ] Thus the negative results observed in the measure-
shear modulus of steel. For all cases, the longitudinal wave speed in the ments described here (which were made using a square-
sample is held fixed at the true value for steel. Thusp/,u, = 0.0 corresponds shaped sample having an area2' less than 20% of that of the
to a fictitious fluid sample having the same sound speed as the longitudinal 100-cm observation circle of Table II) are most likely a con-
wave speed in actual steel. andjul/, = 1.0 corresponds to actual steel. Sam- sequence of the very small size of the test sample, and of the
ple thickness: I cm; source offset: 200 cm; frequency: I kHz: (a) reflected- s e o toethe tes eadvofeth
wave pressure amplitude, evaluated at r = 0, z = 0; (b) transmitted-wave data acquisition technique.22 However, these negative ex-
pressure amplitude, evaluated at r = 0, z = - I cm. perimental results and the theoretical predictions of Table II
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combine to yield an important conclusion regarding panel the very small cross-sectional area of the test samples used.
test measurements: Measurements made on test panels of An important conclusion of the present work is that mea-
large cross section may be significantly corrupted by wave- surements made on test panels of large cross-sectional area
front curvature effects. may be significantly corrupted by wave-front curvature ef-

The larger the test sample used, the greater the contri- fects. The practice of using a steel backing plate to support
butions to the observed pressures from panel regions that are test panels may also introduce undesirable spherical-wave
far from the receiver. It is clear from Table II that the effects into the observations, particularly for samples of
greater the contributions become from distant panel ele- large crss section.
ments, the greater is the possibility that undesirable wave-
front curvature effects will corrupt the results. It is general-
ly desired to obtain the plane-wave response of a test panel. 'The terms "farfield" and "nearfield" are taken here to have the same

It is also generally believed that panels of large cross section meaning as previously described in J. C. Piquette, "Spherical wave scat-
tering by an elastic solid cylinder of infinite length," J. Acoust. Soc. Am.

are superior to panels of small cross section for conducting 79, 1248-1259 (1986).

panel tests, since the undesirable influence of panel edge 'C. B. Officer, Introduction to the Theory of Sound Transmission

diffraction can be reduced by increasing the panel's lateral (McGraw-Hill, New York, 1958), pp. 186-248.

dimensions. However, it is clear from the results presented 'J. E. White, Underground Sound (Elsevier, New York, 1983). Chap. 6.
erreed 'L. M. Brekhovskikh, Waves in Layered Media, translated by D. Lieber-

here that the edge-diffraction reduction benefits derived man, and edited by R. T. Beyer (Academic, New York, 1960), Chap. IV.
from increasing sample size may be more than offset by the 'P. M. Krail and H. Brysk, "Reflection of spherical seismic waves in

detrimental inluences of increased wave-front curvature ef- layered media," Geophysics 48, 655-664 (1983).

fects. Of coursL, this conclusion is based on the assumption "P.M. Morse and K. U. Ingard, TheoreticalAcoustics (McGraw-Hill, New
York, 1968), pp. 638-642.

that the usual practice of establishing plane-wave conditions 'A. E. H. Love,A Treatiseon the Mathematical Theory ofElasticiy (Dover,
by using the farfield of a source is employed. If a suitable New York, 1944), p. 141. To allow for anelastic behavior, we follow the

array technique is used instead, the spherical-wave effects usual practice of allowing the material properties to become complex.

described here may be suppressed. 'The harmonic time dependence e " is assumed. For the component reso-
lution of V2A, see. for example, P. M. Morse and H. Feshback, Methods of

It should be noted that the large overpressures predicted Theoretical Physics (McGraw-Hill, New York, 1953), p. 116.
here have been only theoretically observed to occur for ma- 'See Ref. 6, p. 638.
terials having a shear speed comparable to or greater than "See Ref. 7, p. 56.
the sound speed in the surrounding fluid and that panels are "E. Butkov, Mathematical Physics (Addison-Wesley, Reading, MA, 1968),

p. 694.

generally fabricated from soft, rubbery materials. It should '2F. B. Hildebrand, Introduction to Numerical Analysis (McGraw-Hill,

also be noted that, even for stiff materials, if a sufficiently New York, 1956), pp. 323-325.

large loss is present, these overpressures disappear.23 On the "'See Ref 12, pp. 325-327.
'4See, for example, L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V.

other hand, test panels are frequently fabricated using a Sanders, Fundamentals ofjAcoustics (Wiley, New York, 1982), pp. 127-

steel backing plate for support. It may very well be that, for 131.

sufficiently large samples, this steel backing plate intro- "C,mpare Eq. (30) with Eqs. (19) and (20), the solutions for the poten-

duces undesirable spherical-wave effects into the observa- tials in the general case.
'The material properties used to deduce the results for the metallic cases in

tions.' Table I were taken from Ref. 14, p. 461. The required properties for the
polymethylmethacrylate case were taken from B. Hartmann and J. Jar-

IV. SUMMARY AND CONCLUSIONS zynski, "Ultrasonic hysteresis absorption in polymers," J. Appl. Phys. 43,
4304-4312 (1972).

The problem of the interaction of a spherical wave with "A. D. Pierce, Acoustics. An Introduction to Its Physical Principles and Ap-
a homogeneous and isotropic solid plate of infinite cross sec- plications (McGraw-Hill, NewYork, 1981), p.40, Eq. 1.11.1 lb.Therefer-

tion but finitc thickness was considered theoretically. Re- encedequationgivestheacousticintensity. ThepowerintegralofEq. (31)
follows from integrating the intensity over the planar surface. The simplesuits of numerical calculations of reflected and transmitted area element 2rrrdr is appropriate for angularly independent acoustic

pressure waves for a variety of test materials immersed in a fields. The unit vector h is equal to k on the surface of the plane that faces

water medium were presented. The theory predicts that the source, and is equal to - k on the surface of the plane that is opposite

when the shear speed in the .olid is comparable to or exceeds the source.
"The mechanisms considered were thickness resonances involving longitu-

the sound speed in the surrounding fluid, the reflected- and dinal or shear waves, critical angle phenomena, flexural wave coinci-

transmitted-wave pressure amplitudes can exceed the maxi- dences, and "refraction arrival" phenomena (see Ref. 2. pp. 195-198).

mum value of the incident-wave pressure amplitude on the "'Another possible mechanism, which was not initially considered but was

surface of the plate. These results are of practi- ' impor- suggested by a reviewer of this article, is the generation of the symmetric
Lamb wave by the incident wave. It is possible that such waves may in-

tance to those concerned with acoustical measurements clude a component directed toward the origin. These waves would be fo-
made on planar structures. However, a complete theoretical cused at the origin, and may therefore serve to explain the reported

interpretation of the causes of the results was not presented overpressures. However, a thorough investigation of this possibility is be-
herein, and this awaits further investigation, yond the scope and intent of the present article. For a discussion of the

physics of the generation of both symmetric and antisymmetric Lamb
An experiment was performed on polymethylmethacry- waves in an elastic plate under plane-wave excitation, the interested read-

late and steel samples using experimental parameters con- er is directed to R. Fiorito, W. Madigosky, and H. U0berall, "Resonance

sidered in the theoretical calculations. The measurements theory of acoustic waves interacting with an elastic plate," J. Acoust. Soc.
Am. 66, 1857-1866 (1979).were found to be in better agreement with simple plane-wave "See, for example. Ref. 17, p. 128, Eq. (3-5.8), and the discussion in the

theory than with the spherical-wave calculations presented paragraph following this equation. Although this equation is strictly valid

here. These negative results ar, very likely a consequence of only for thin plates, the computed coincidence frequencies are sufficiently
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different from the frequencies of interest that this consideration is not tions to the observed waves originating from the sample edges.
important here. 2

The results presented in Table I for polymethylmethacrylate include loss.
2

The tendency exhibited by the values pr.o"!.od in Table 11 is for the total Thus the loss factor ofthis material is insufficient to eliminate the predict-
power propagating away from the plate through the circles of observation, ed phenomenon, given a sufficiently large sample. It should also be noted
E, (V) + E, (W), to exceed that which is incident on the circle ofobserva- that, even though the overpressures disappear when a sufficiently large
tion that is facing the source, E, (P'), by an increasing percentage for de- loss is i,,t.oduced, the significant differences between plane-wave and
creasing values of 9. Thus, the smaller thc tc- sample used, th.- smaller is spherical-wave theory persist.
the likelihood that the predicted overpressures wtll be observed. 24Of course, the damping influence of the lossy materials affixed to the steel

2 -The data acquisition technique involved the use of pulsed interrogating backing plate may inhibit the spherical-wave effects. This is currently an
waves and the use ofan observation "gate." This gateeliminated contribu- unresolved issue that must be answered by further research.
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cr lar segment [Fig. ) I, and this effect increases with neglected altogether. In any ,se V us damping would
an incase in the value of r, which makes the segment haveonly a marginal effecton cut-on frequencies of high-
flatter, ap oaching a rectang s shown in Fig. 3 for the er order modes.
case of three'az,,muthal partitions ' -3).

Ill. CONCLUDING 01E1ARKS

The foregoing study ihdctgates the followi h .. ........... . ..
I ) One azimuthal partit f6u. does not raise e cutoff heT an ut would like to thank the autlaorities of the

frequency (the smallest cut-on freq-eny) at all.d
(2) Azimuthal partitioning can at 6est (for th this investigation possible. His discussions with his col-

m p i ) ec.e m leagues Larry J. Eriksson and Mark C. Allie were very re-muthalparttions)/ ris e the cutoff frequen *aaet

(k , r,, r u) fro m 1.84 to 3.83. a"-,n"  .

(3) Provision of a radial parti ,in addition, coun-
terproductive because it lowe e cutoff frequeney param-
t=tcr in the outer annula gments.

The last obser on is indeed fortuitoug'inasmuch as it
,cj~ b exra diffih, ., *,:, c!" ... the,

Vnoe exr I.u h L. J. Eriksson and C. Allie, J. Acoust. Soc Am Suppl. 1 80. SI I
inner s of the duct in an active Froise control system. (1986).

F -li may be pointed out thkat in the foregoing anal- 2J. M. Tyler and T. G. Sofn SAti0'rans. 70. 309-322 (1962)
ysi he wall and the partitionsvolf the duct have been as- 'C. L. Morfey. J. Sound Vib. I' K7_.(1964).

ed to be sufficiently massive and rigid, otherwise there CI.or.I SndV.6223''t.7(
would be sound-structure iteraction altering the results of Chap. L. uceyNewYork. Q87),

the investigation. Beside-, the role of damping has also been Lh. Eriksson. J. Acou, Soc. Am 68, 54 (198 ,,

ERRATUM

Erratum: "Spherical-wave scattering by a finite-thickness sold

plate, with some implications for panel measurements" [J. Acoust.
Soc. Am. 83, 1284-1294 (1988)]

Jean C. Piquette
Naval Research Laboratory. Underwater Sound Reference Detachment. P. 0. Box 56833 7 Orlando. Florida
32856-8337
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PACS numbers: 43.20.Fn, 43.30.Gv, 43.lO.Vx

Equation (17) was erroneously printed twice in this article, while Eq. (18) was omitted. Equation (18) should
have been

=£ r b(13)Ju([3r)expb,'k r  /37(z ' - z)]f dl
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